Dopaminergic Reward Signals Selectively Decrease fMRI Activity in Primate Visual Cortex
نویسندگان
چکیده
Stimulus-reward coupling without attention can induce highly specific perceptual learning effects, suggesting that reward triggers selective plasticity within visual cortex. Additionally, dopamine-releasing events-temporally surrounding stimulus-reward associations-selectively enhance memory. These forms of plasticity may be evoked by selective modulation of stimulus representations during dopamine-inducing events. However, it remains to be shown whether dopaminergic signals can selectively modulate visual cortical activity. We measured fMRI activity in monkey visual cortex during reward-only trials apart from intermixed cue-reward trials. Reward without visual stimulation selectively decreased fMRI activity within the cue representations that had been paired with reward during other trials. Behavioral tests indicated that these same uncued reward trials strengthened cue-reward associations. Furthermore, such spatially-specific activity modulations depended on prediction error, as shown by manipulations of reward magnitude, cue-reward probability, cue-reward familiarity, and dopamine signaling. This cue-selective negative reward signal offers a mechanism for selectively gating sensory cortical plasticity.
منابع مشابه
Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI
Reward and novelty are potent learning signals that critically rely on dopaminergic midbrain responses. Recent findings suggest that although reward and novelty are likely to interact, both functions may be subserved by distinct neuronal clusters. We used high-resolution functional magnetic resonance imaging (fMRI) to isolate neural responses to reward and novelty within the human substantia ni...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملDopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representa...
متن کاملFunctional imaging of the human dopaminergic midbrain.
Invasive recording of dopamine neurons in the substantia nigra and ventral tegmental area (SN/VTA) of behaving animals suggests a role for these neurons in reward learning and novelty processing. In humans, functional magnetic resonance imaging (fMRI) is currently the only non-invasive event-related method to measure SN/VTA activity, but it is debated to what extent fMRI enables inference about...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 77 شماره
صفحات -
تاریخ انتشار 2013